Evaluation of subcooled MQL in cBN hard turning of powder-based Cr-Mo-V tool steel using simulations and experiments

نویسندگان

چکیده

Abstract Metal cutting fluids for improved cooling and lubrication are an environmental risk a health workers. Minimizing water consumption in industry is also goal more sustainable production. Therefore, metal emulsions that contain hazardous additives consume considerable amounts of being replaced with delivery systems, like vegetable oils delivered small aerosol droplets, i.e., via minimum quantity (MQL). Since the volume fluid MQL small, capacity not optimal. In order to improve MQL, spray can be subcooled using liquid nitrogen. This paper investigates machining simulations experiments. The provide complementary information experiments, which would otherwise difficult obtain, e.g., thermal behavior tool-chip contact residual strains on workpiece surface. cBN hard turning experiments done powder-based Cr-Mo-V tool steel, Uddeholm Vanadis 8 −10 °C regular at room temperature. forces wear measured from used as calibration factor simulations. After calibration, evaluate effects surface workpiece. good agreement terms chip morphology forces. show there only difference between regarding behavior, forces, or process temperatures. predict substantial plastic strain after machining. deformations shown have significant effect simulated initial pass, outcome has major implications inverse material modeling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Surface Roughness and Flank Wear by CBN and PCBN Tools on Hard Cr - Mo Steel

Hard turning is the latest technology and is used to turn hard materials by using cutting tools like CBN and PCBN. Certain hard materials like titanium, Inconel and stainless steel are pronounced as difficult to cut materials. The superior cutting tools effectively machine such hard materials and produces desirable surface roughness with less tool wear. The present research was carried on hard ...

متن کامل

Machinability of Hard Martensitic Stainless Steel and Hard Alloy Steel by CBN and PCBN Tools by Turning Process

Hard turning of martensitic stainless steel is gaining importance in all manufacturing sectors like automobile and aerospace industries. Machinability of materials depends on surface roughness, tool wear, cutting forces, specific cutting pressure and work material hardness. In this research hard martensitic stainless steel AISI 440 C and SCM 440 alloy steel was used as work materials. CBN and P...

متن کامل

Mechanism of Bainite Transformation in Fe-Cr-Mo-V-Ti-C Steel

The kinetics and mechanism of bainite transformation have been studied in Fe-Cr-Mo-V-Ti-C steel high speed dilatometry backed by thermodynamic analysis. The complete transformation of austenite, however, has not occurred at any reported temperature. Obtained results confirm the incomplete reaction phenomenon with the cessation of the bainite transformation well before the paraequilibrium is ach...

متن کامل

Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models

The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This   work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...

متن کامل

hazard evaluation of gas condensate stabilization and dehydration unit of parsian gas refinery using hazop procedures

شناسایی مخاطرات در واحد 400 پالایشگاه گاز پارسیان. در این پروزه با بکارگیری از تکنیک hazop به شناسا یی مخاطرات ، انحرافات ممکن و در صورت لزوم ارایه راهکارهای مناسب جهت افزایش ایمنی فرا یند پرداخته میگردد. شرایط عملیاتی مخاطره آمیز نظیر فشار و دمای بالا و وجود ترکیبات مختلف سمی و قابل انفجار در واحدهای پالایش گاز، ضرورت توجه به موارد ایمنی در این چنین واحدهایی را مشخص می سازد. مطالعه hazop یک ر...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Advanced Manufacturing Technology

سال: 2021

ISSN: ['1433-3015', '0268-3768']

DOI: https://doi.org/10.1007/s00170-021-07901-x